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The properties of spectral methods are surveyed and their extension to solve problems in 
complex geometries is developed. A new iteration procedure is introduced to solve efficiently 
the full matrix equations resulting from spectral approximations to nonconstant coefficient 
boundary-value problems in complex geometries. It is shown that the work required to solve 
these spectral equations exceeds that of solving the lowest-order finite-difference approxima- 
tion to the same problem by only O(Nlog N). 

1. INTRODUCTION 

In this paper, we outline some new techniques that permit the effkient application 
of spectral methods for solving problems in (nearly) arbitrary geometries. The 
resulting methods are a viable alternative to finite-difference and finite-element 
methods for these problems. Spectral methods should be particularly attractive for 
problems in several space dimensions in which high accuracy is required. 

Spectral methods are based on representing the solution to a problem as a trun- 
cated series of smooth functions of the independent variables. Whereas finite-element 
methods are based on expansions in local basis functions, spectral methods are based 
on expansions in global functions. Spectral methods are the extension of the standard 
technique of separation of variables to the solution of arbitrarily complicated 
problems. 

Let us begin by illustrating spectral methods for the simple one-dimensional heat 
equation. Consider the mixed initial-boundary value problem 

au@, r> 
at 

= K a*+, f> 
3X2 

(0 < x < 7r, t > 01, 

u(0, t) = u(n, t) = 0 (t > 015 
u(x, 0) =&l-(x) (0 Q x < n). 

The solution to this problem is 

u(x, t) = T a,(r) sin n-u, 
n-= I 

a,(t) =f”e--Zn2r, 
70 
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where 

f, = i j: f(x) sin nx dx (1.6) 

are the coefficients of the Fourier sine series expansion off(x). 
A spectral approximation to ( 1.1 t( 1,3) is obtained by simply truncating (1.4) to 

uN(x, t) = $ a,(t) sin nx (1.7) 
II=1 

and replacing (1.5) by the evolution equation 

da,- 
dt 

- - Kn’a, (n = l,..., N) (1.8) 

with the initial conditions a,(O) =f, (n = I,..., N). 
The spectral approximation (1.7~(1.8) to (l.l)-(1.3) is an exceedingly good 

approximation for any time t greater than zero as N + co. In fact, the error 
u(x, t) - uN(x, t) satisfies 

u(x, t) - u,(x, t) = ftJ fnepKnzt sin nx = O(CKN2’) (N-P co) (1.9) 
rI=Nfl 

for any t > 0. In contrast to (1.9), finite-difference approximations to the heat 
equation using N grid points in x lead to errors that decay only algebraically with N 
as N + co. Furthermore, this spectral method for the solution of the heat equation is 
efficiently implementable by the fast Fourier transform (FFT) in O(N log N) 
operations. 

There are several significant difficulties in extending the simple spectral method 
employed for (1.1~( 1.3) to more general problems. These difficulties and their 
solutions will be discussed in the following sections. Some further details are given in 
the author’s monograph [ 11. In Section 2, we discuss the difficulty caused by 
nontrivial boundary conditions. In Section 3, we discuss the diffkulty of treating 
nonlinear and nonconstant coefficient terms. Then, in Section 4, we summarize the 
properties of spectral methods for problems in simple geometries. In Section 5, we 
explain how spectral methods can be extended to problems in complicated 
geometries. In Section 6, a new technique for the efficient solution of spectral 
equations that arise in complicated geometries is given. Some representative test 
problems are discussed in Section 7. Then, in Section 8, we summarize our results 
and provide a glimpse of some other new developments in spectral methods that 
should find wide application. 
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2. BOUNDARY CONDITIONS 

The Fourier series (1.4) converges rapidly if u(x, t) is infinitely differentiable and 
u(x, t) satisfies the boundary conditions 

PU(X, l) = o -- axzn (x = 0,x) 

for all nonnegative integers n. Under these conditions, the error after N terms 

-5,(x, t) = u(x, t) - 1 a,(t) sin nx 
II=1 

goes to xero uniformly in x faster than any power of l/N as N+ co. On the other 
hand, if u(x, t) is not infinitely differentiable or if any of the conditions (2.1) is 
violated, then sN(x, t) = O(l/Np) as N+ co for some finite p. For example, 

1 = 2 (-1)” siyny-yx (0 < x < n), n=O (2.2) 

but the error incurred by truncating after N terms is of order l/N for any fixed x, 
0 ( x < rr. Furthermore, the convergence of (2.2) is not uniform in x; (2.2) exhibits 
Gibbs phenomenon, namely, 

dt/W = O( 1) (N+ co, ( fixed). 

For any fixed N, there are points x at which the error after N terms of (2.2) is not 
small. The poor convergence of (2.2) is due to the violation of (2.1) for n = 0. 

More generally, most eigenfunction expansions of a function f(x) converge faster 
than algebraically (i.e., the error incurred by truncating after N terms goes to zero 
faster than any finite power of l/N as N -+ co) only iff(x) is infinitely differentiable 
andf(x) satisfies an infinite number of special boundary conditions. For example, the 
Fourier-Bessel expansion 

where I, is the nth smallest root of Jo(A) = 0, converges faster than-algebraically only 
if f is infinitely differentiable and 

[;gx-$]kf(x,=o at x=1 

for k = 0, 1, 2 ,.... 
When a spectral expansion converges only algebraically fast, spectral methods 

based on these eigenfunction expansions cannot offer significant advantages over 
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more conventional (finite-difference, finite-element) methods. Eigenfunction expan- 
sions of this kind should not normally be used unless the boundary conditions of the 
problem imply all the extra boundary constraints like (2.1) or (2.3). For example, if 
periodic boundary conditions are compatible with the differential equation to be 
solved, complex Fourier series are suitable to develop efficient spectral approxima- 
tions. 

In the development of spectral methods for general problems, it is important that 
the rate of convergence of the eigenfunction expansion being used not depend on 
special properties of the eigenfunctions, like boundary conditions, but rather depend 
only on the smoothness of the function being expanded. Of course, if the solution to 
the problem being solved is not smooth, one should not expect errors that decrease 
faster than algebraically with l/N when global eigenfunction expansions are used. 
Faster than algebraic rates of convergence may be achieved for these problems by 
either patching the solution at discontinuities (see Section 5) or pre- and postprocess- 
ing of the solution (see [2]). 

There is an easy way to ensure that the rate of convergence of a spectral expansion 
of a function f(x) depends only on the smoothness of f(x), not its boundary proper- 
ties. The idea is to expand in terms of suitable classes of orthogonal polynomials, in- 
cluding Chebyshev and Legendre polynomials for all those problems in which con- 
straints like (2.1) and (2.3) are unrealistic. These polynomial expansions avoid all 
difficulties associated with the Gibbs phenomenon provided the solution f(x) is 
smooth. 

From the mathematical point of view, the classical orthogonal polynomials are 
eigenfunctions of singular Sturm-Liouville problems. It is not hard to show (see [l] 
for the details) that expansions using eigenfunctions of such singular Sturm-Liouville 
problems converge at a rate that depends only on the smoothness off(x), in contrast 
to eigenfunction expansions based on nonsingular Sturm-Liouville problems that lead 
to additional boundary constraints like (2.1) on f(x). 

These results for othogonal polynomial expansions are easily demonstrated in the 
case of Chebyshev polynomial expansions. The n&degree Chebyshev polynomial 
T,(x) is defined by 

TJCOS e) = cos ne. (2.4) 

Therefore. if 

S(x) = T a,~,(4 
ll=O 

g(8) =f(cos e) = -f a, cos nt9 
II=0 

(2.5) 

(2.6) 

Thus, the Chebyshev polynomial expansion coefficients a,, off(x) are just the Fourier 
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cosine expansion coefficients of the even, periodic function g(8). A simple integration 
by parts argument then shows that 

nPCZ,+O (n-+cQ) 

provided g(0) (or, equivalently, f(x)) has p continuous derivatives. Since 

it follows that the rate of convergence of (2.5) is faster than algebraic iffis smooth. 
In summary, spectral expansions should be made using series of orthogonal 

polynomials unless the boundary conditions of the problem are fully compatible with 
some other class of eigenfunctions. In practice, Chebyshev and Legendre polynomial 
expansions are recommended for most applications, supplemented by Fourier series 
and surface harmonic series when boundary conditions permit. 

3. NONLINEAR AND NONCONSTANT COEFFICIENT PROBLEMS 

Another difficulty with general kinds of spectral methods is their application to 
problems with nonlinear and nonconstant coefficient terms. Before explaining the 
solution to this problem, let us illustrate the difficulty. 

Suppose we wish to solve the partial differential equation 

(3.1) 

where u = U(X, t) and JV is a bilinear (nonlinear) operator that involves only spatial 
derivatives and 9 is a linear operator that involves only spatial derivatives. The 
operators ./t’^ and 9 may depend on both x and t. A spectral method for the solution 
of (3.1) is obtained by seeking the solution as a finite spectral expansion: 

u(x, t) = 2 a,(t) v,(x), (3.2) 
“-1 

where we assume for now that v,(x) (1 < n < co) are a complete set of orthogonal 
functions. If we introduce the reexpansion coefficients en,,,,, and d,, so that 

(3.31 

(3.4‘ 
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and equate coefficients of w,(x) (n = l,..., N) in (3.1), we obtain 

da, N 
dt - 

1 cc .,,Wa,Wa,W + i 4,W&) (n = L..., N). (3.5) 
IfI=, p=l !?I=1 

Equations (3.5) are the spectral evolution equations for the solution of (3.1). They 
have one very serious drawback. In general crimp and d,, are nonzero for typical n, 
m, p so that evaluation of da,/dt from (3.5) for all n = I,..., N requires O(N3) 
arithmetic operations for the bilinear term and O(N*) operations for the linear term. 
Thus, solution of (3.5) requires order N3 operations per time step. Since operational 
spectral calculations now involve NX 106, the computational cost of the direct 
solution of (3.5) is prohibitive (even if only linear terms are present). 

The problem here is one of computational complexity. Finite-difference methods 
for the solution of (3.1) on N grid points may require only order N operations per 
time step. If the spectral method really requires order N3 operations per time step it 
cannot compete when N is large. 

Another example illustrating the computational complexity of spectral methods is 
given by the nonlinear diffusion equation 

wx, t) -= at e” 2 (x, t), 

If we seek the solution as 

4x, t) = f a,(t) v,(x) 
n=l 

(3.7) 

in terms of the orthonormal functions V,(X), then 

da,- 
dt - I 

v,(x) fw 5 a&> v,(x) 5 a,~$ (xl dx 
m=1 I p=1 

for n = l,..., N. These evolution equations for {a,(t)] have an exponential degree of 
computational complexity as they are expressed as an integral functional of {a,(t)}. 

The solution to the problem of computational complexity is to use the author’s 
transform methods. Let us illustrate the technique for a pseudospectral (or 
collocation) approximation to (3.6) [3]. First, we introduce N suitable collocation 
points X, , x2 ,..., xN lying within the computational domain. Then, the approximate 
solution (3.7) is forced to satisfy the partial differential equation (3.6) (or its 
boundary conditions) exactly at these discrete points at every time t. More 
specifically, the following three steps are done at each time step t: 

(i) Determine N coefficients a,,(t) (n = l,..., N) so that 

u(xj, t) = $j a,(t) V"(xj) (j = I ,..., N). 
n=1 

(3.9) 
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(ii) Evaluate u,,(xi, 1) by 

(iii) Finally, evaluate &(x,,, t)/& by 

au(xj 9 f, 
- = e"(xJt'u,,(xj) t) 

at 

(j= l,..., N) 

(3.10) 

and march forward to the next time step. 
The idea of the pseudospectral transform method can be restated as follows: 

Transform freely between physical (xj) and spectral (a,) representations, evaluating 
each term in whatever representation that term is most accurately, and simply, 
evaluated. Thus, in (3.11), we evaluate eU in the physical representation while we 
compute u,, in the spectral representation by (3.10) because it is most accurately 
done there. 

It should be apparent to the reader that pseudospectral transform methods can be 
applied to any problem that can be treated by finite-difference methods regardless of 
the technical complexity of nonlinear and nonconstant coefficient terms. 

Let us now examine the computational complexity of pseudospectral transform 
methods. There are at least three aspects to this question: (i) the computational com- 
plexity of differentiation, integration, etc., of spectral series; (ii) the computational 
complexity of transforming back and forth between physical and spectral representa- 
tions; and (iii) the computational complexity of solving the resulting equations for the 
spectral coefficients. 

For the expressions of interest, computation of derivatives of an N term spectral 
expansion requires order N arithmetical operations. For the Fourier series (1.7), this 
fact is obvious: 

d ,& .v 
z ,, y a, sin nx = x na, cos nx, 

n=, 

d2 $. N 

dx2 ,y, 
a, sin nx = - 2 n’a, sin nx. 

n-1 

For the Chebyshev polynomial expansion (2.5), the computational complexity of dif- 
ferentiation is a little less apparent. Since r,(cos S) = cos nf% 

C+,(x) T;-,(x) 2 --_ 
n+l 

~ = ;- T”(X) 
n-l II 

(n > 01, 

where c,, = 2, c, = 1 (n > l), and Tb = T’-, = 0. Therefore, if 
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then 

2 5 a,*,(x)= 5 c,b, n=o [ 
r-1 

!I=1 s-- 
n-l 1 

N+I 

Equating coefficients of Z’,(x) for n = l,..., N + 1 gives the recurrence relation 

cn-1 n-1 b - b,, , = 2na, (l<n<N), (3.12) 
6, = 0 (n > N). 

The solution of (3.12) for 6, given a,, requires only order N arithmetic operations. 
Similar recurrence relations can be obtained for differentiation of spectral series 
based on other sets of orthogonal polynomials and functions. 

The computational complexity of transforming between spectral and physical space 
has several interesting aspects. The problem is: How much computational work is 
necessary to evaluate 

uj= t a,ty,(x.J (j = l,..., N) (3.13) 
!l=l 

given (a,} and, inversely, how much work is necessary to compute the expansion 
coefficients {a,,} given {uj)? It is obvious that (3.13) can be evaluated for (ui) in 
O(N’) operations while it can be solved for a, in O(N3) operations. However, these 
estimates are much too pessimistic; for many important expansions the operation 
count to perform the transform (3.13) and its inverse is no larger than O(N(log NY) 
with p < 2. 

In the case of Fourier series, the transform (3.13) and its inverse can be computed 
in O(N log, N) operations if N = 2p using the fast Fourier transform. However, most 
of the computational efficiency of transform methods comes not from the FFT but 
from the separability of multidimensional transforms. Thus, a three-dimensional 
discrete Fourier transform can be expressed as three one-dimensional Fourier 
transforms, 

J-l K-1 L-1 

=-S 
e2xijmlJ 2niWK 

,f$l ce 
k=O 

,zo a(j, k, &,2”i~PIl~. (3.14) 

The left side of (3.14) requires roughly (JKL)2 operations to evaluate at all the 
points 0 < m < J, 0 < n < K, 0 <p < L. On the other hand, even without the FFT the 
right side of (3.14) requires only about (XL) (J t K t L) operations to evaluate at 
all the points. When the FFT is applied to the one-dimensional transforms on the 
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right side of (3.14), the number of operations necessary to evaluate (3.14) is reduced 
further to (JKL) (log,J+ log,K + log,L) if J, K, L are powers of 2. 

For example, the spectral code CENTICUBE solves the Navier-Stokes equations 
for three-dimensional incompressible flow with periodic boundary conditions; three- 
dimensional Fourier series with resolution up to 128 x 128 x 128 are used to 
represent the flow. The equations for the Fourier components u(k, t) of the velocity 
field involve several convolution sums of the form 

c u(P,t> u@ - P, t). 
IPI< 

It is not hard to show that direct evaluation of all the required convolution sums on 
the CRAY-1 computer would require (using optimized code) about 5 x lo5 set of 
computer time at each simulation time step. On the other hand, the CENTICUBE 
code executes on the CRAY-1 in less than 20 set per time step! This speedup by a 
factor 2.5 X lo4 is broken down roughly as follows: a factor 2 for using the FFT in- 
stead of an optimized matrix multiply to perform a one-dimensional transform and a 
factor lo4 for performing the transforms as a sequence of one-dimensional transforms 
as in (3.14). 

More general transforms can also be implemented efftciently. The author has 
recently shown [4] that “fast” transforms of N-term series of Legendre polynomials, 
surface harmonics, Bessel functions, Jacobi polynomials, Gegenbauer polynomials, 
etc., can be accomplished in O(N(log N)‘/log log N) arithmetic operations while 
transforms of series of Hermite and Laguerre polynomials can be accomplished in 
O(N(log N)*) operations. At the present time, these transforms are of mostly 
academic interest-as discussed above the speed of transform methods for problems 
of realistic size is attributable to the formulation of the problem in terms of separable 
transforms, not the existence of a fast transform. Nevertheless, speedups of factors 2 
and more are significant, so most of our current work with spectral methods uses 
transforms based on the FFT. 

The third question regarding computational complexity of spectral transform 
methods concerns the complexity of solving the equations for spectral coefficients. In 
the case of initial-value problems solved by explicit time-stepping methods, the 
answer is provided by the transform methods discussed above: O(N(log N)P) opera- 
tions are required per time step. The answer to the question is more complicated for 
the solution of boundary-value problems or implicit time-stepping methods for initial- 
value problems. 

Spectral approximations to general boundary-value problems lead to full N x N 
matrix equations for the N expansion coefficients a,. It would seem that solution of 
these equations requires O(N3) arithmetic operations while storage of the matrix re- 
quires O(N*) memory locations. Since typical problems now involve N - 106, the 
direct solution (or even the direct formulation) of such problems is clearly un- 
workable now. The solution to this problem is given in Section 6. The solution to the 
spectral equations requires essentially only O(N(log N)P) (p < 2) operations and only 
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O(N) memory locations. Solution of spectral equations, even though they lead to for- 
mally full matrix problems, can be accomplished with little more work and memory 
than required to solve the simplest finite-difference equations! 

4. TIME DIFFERENCING AND BOUNDARY LAYERS 

Spectral methods based on the classical orthogonal polynomials have another 
feature that is very attractive for some kinds of problems but leads to difficulties with 
others. This feature is very high resolution near the boundaries. For example, the 
collocation points for Chebyshev polynomial pseudospectral methods for problems 
on - 1 < x < 1 are usually chosen to be xi = cos nj/N (j = 0, I,..., N). The collocation 
points x, and xN-, are within about 7r2/2N2 of the boundary points x,, and xN, respec- 
tively, so that the boundary resolution is Ax = 0( 1/N2). This leads to extremely good 
resolution properties of spectral methods for boundary-layer problems (see [ 1, 51). 
While resolution of a problem with a boundary layer of thickness E < 1 would require 
0(1/s) uniformly spaced grid points, it requires only 0(1/s”*) terms in the 
Chebyshev spectral series. [Nonuniform grids should, of course, be used in many of 
these problems. They can also be implemented efficiently in spectral methods using 
coordinate transformations.] 

The high boundary resolution of spectral methods is not directly useful when 
problems without boundary layers are to be solved. For example, consider the one- 
dimensional wave equation 

u,+ux=o (--l<x< l,f>O), (4.1) 

u(- 1, t) =f(t> (t > O), (4.2) 

4-F 0) = g(x) (-1 <x< 1). (4.3 

Using a Chebyshev polynomial spectral representation 

.v 
u(x, t) = 1 a,(t) T,(x), (4.4) 

n-0 

where T,(x) = cos(n cos ’ x), the spectral-tau equations for the solution of (4.1) are 
[‘I: 

da,, 

dt - -$ piJo pap 
(O<n <N- 1), 

p+nodd 

(4.5) 

2 (-l)“a,(t) =f(t), (4.6) 
II-0 
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where c, = 2, c, = 1 (n > 1). The numerical solution of (4.5)-(4.6) in time can be 
done using any absolutely stable time integration method for ordinary differential 
equations, such as one of the Adams methods 161. For an explicit Adams method 
(Adams-Bashforth method), absolute stability in the solution of (4.5~(4.6) requires 
that 

At = 0( l/N’). (4.7) 

This result may be verified from (4.5)-(4.6) using Gerschgorin’s theorem on the dis- 
tribution of eigenvalues or, more physically, from the classical explicit stability condi- 
tion At = O(Ax) with Ax = 0( l/N’). Specifically, the first-order Adams-Bashforth 
method (Euler’s method) is stable for the solution of (4.5~(4.6) provided that 

At < 81N2. (4.8) 

The time step restrictions (4.7~(4.8) are qualitatively more severe than those en- 
countered by standard finite-difference methods for (4.1)-(4.3). The solution to 
(4.1)-(4.3) does not exhibit boundary layer structure (unless g(x) or f(t) has non- 
uniform variation) so a uniform grid may be employed giving the stability criterion 
At = 0( l/N) using N grid points. The high boundary resolution of the spectral 
scheme that leads to the more stringent requirements (4.7) or (4.8) may seem wasted 
in this problem. In fact, this high boundary resolution is not completely useless; while 
high-order accurate stable finite-difference schemes for solution of (4.1)-(4.3) on a 
uniform grid are complicated and require a number of spurious numerical boundary 
conditions (see, for example, [7]), the infinite-order accurate spectral scheme 
(4.5t(4.6) is quite straightforward and requires no spurious boundary conditions to 
be applied. However, it is also nice to know that the stiffness of the spectral equations 
can be easily circumvented and time step restrictions like those of finite-difference 
schemes can be easily obtained. 

At the present time, there are three alternative ways to avoid the severe time step 
restrictions of spectral methods in problems that do not exhibit strong boundary-layer 
structure. First, a semi-implicit scheme [ 11 may be employed to relax the time step 
restrictions (4.7)-(4.8) to At = 0(1/N) as for finite-difference schemes. The idea here 
is to treat implicitly just those parts of the problem, to wit, the boundary regions, that 
lead to the stiffness of the spectral equations. 

Second, it is possible to formulate explicit unconditionally stable time differencing 
schemes for spectral methods [ 81. Domain of dependence arguments may be used to 
demonstrate the existence of conditional stability bounds for explicit finite-difference 
methods. These bounds can be avoided in explicit spectral methods because global 
data is involved at each time step to march the solution forward in time. A simple ex- 
ample of an unconditionally stable explicit spectral method may be given for 

Wk, t> 
_- = -iku(k, t), 

ar (4.9) 
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which is the equation for a Fourier mode of the solution to au/~3 + C%/C?X = 0 with 
periodic boundary conditions. Leapfrog time differencing of (4.9) gives 

u(k, t + At) - u(k, t -At) 
-2dt 

= -iku(k, t), 

which is second-order accurate in At and has the explicit stability bound 1 kAtl < 1. 
However, the modified scheme 

u(k, t + At) - u(k, t-At) . sin kAt 
2At 

= --1 dt u(k, t) (4.11) 

is still second-order accurate but it is unconditionally stable since lsin kAt 1 < 1 for all 
kAt. [By an accidental cancellation (4.11) happens to give the exact solution em “” of 
(4.9) for all kdt.] 

The third method for stabilizing time integrations of spectral methods is to use a 
full implicit time integration method. With N degrees of freedom used to resolve the 
spatial dimensions, full implicit schemes give full NX N sets of linear equations to 
solve at each time step. An efficient method to solve these equations is presented in 
Section 6. 

5. FORMULATION OF SPECTRAL METHODS IN COMPLEX GEOMETRIES 

For most problems in complex geometries, it is both inefficient and disadvan- 
tageous to seek special sets of spectral expansion functions tuned to the details of the 
geometry. First, determination of such a set of special functions is itself a com- 
putationally difficult problem in the complex geometry that must be repeated for 
every new geometry. Second, unless very special care is taken, the resulting spectral 
series will not be guaranteed of fast convergence properties for the problem of in- 
terest. Third, much computer storage will be required to store the required values of 
the expansion functions themselves and fast, separable, transforms between physical 
space and transform space will not normally be available. 

There are two very general and powerful methods for the formulation of spectral 
methods in complex geometries that appear to preserve all the nice properties of spec- 
tral methods in simpler geometries, namely, mapping and patching. 

The idea of mapping is to transform the complex geometry into a simpler one by a 
smooth transformation. For example, the annular region 

(5.1) 

where (r, 8) are polar coordinates, is transformed into the rectangle 

-l<z< 1, 

0<8<2n, 
(5.2) 
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by the simple stretching transformation 

r-f,(e) z = 2f2(e) -f,(e) - l* (5.3) 

In the mapped coordinates (5.2), a spectral expansion using Chebyshev polynomials 
in z and Fourier series in B is appropriate (because the solution to the problem must 
be periodic in 0). The complication of using a coordinate transformation appears in 
the coefficients of the differential equation in the transformed domain. For example, 
derivatives are transformed according to 

au 2 C34 

ar o’frn-rnaz 8’ 

au au 
I I 

w; -f’l) - (fi +A) i+d 
ae ,=a8 z- fl -f, z 0' 

(5.4) 

(5.5) 

The complication of the equation due to transformation causes no essential dif- 
ficulty in the implementation of explicit time stepping schemes for initial-value 
problems because transform methods are still applicable. For boundary-value 
problems and full implicit treatment of initial-value problems, it is essential that the 
full matrix equations be solved by the fast iteration procedures introduced in the next 
section. 

The simple stretching transformation (5.3) can only be applied if the boundaries 
r =f, and r =fi are single-valued functions of I!?. More general boundaries require 
more sophisticated mappings. In two dimensions, conformal mapping is sometimes 
useful. Also, pseudo-Lagrangian marker particles may be used to define a coordinate 
frame. Many other sources of suitable transformations are possible (see, for example, 
[9]). In order to maintain spectral accuracy, the mappings should also be constructed 
using spectral methods. For example, we are currently studying spectral methods to 
find general curvilinear coordinate systems by techniques similar to those described 
in Ref. [9]. 

The idea of patching is to subdivide a complicated region into a number of simpler 
regions, make spectral expansions in each of the simpler regions, and then solve the 
problem in the complicated region by applying suitable continuity conditions across 
the artificial internal boundaries. For example, consider the Poisson equation 

v*u =f 

in the L-shaped domain 

(5.6) 
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We subdivide the domain into three domains: 

I: O<x<l, O,<Y< 1; (5.7a) 

II: -1 <x<o, O,<Y,< 1; (5.7b) 

III: -1 <x<o, l,<y<2. (5.7c) 

In each of these regions, we represent u(x, y) as a double Chebyshev series: 

4(x, Y) =x c 4, T,(2x - 1) T&Y - 11, 

%,(X3 Y> = c ,y a;, T&x + 1) T,(2Y - 11, 

%**k Y> = z: x uif T,(2x + 1) T,(2y - 3). 

(5.8a) 

Across the internal artificial boundaries, continuity of u and the flux of u is imposed. 
For example, at the interface between regions I and II, we require that 

(O<Y ,< 11, (5.9a) 

2 (0, Y) = 2 (0, y) (O<Y < 1). 

The system of equations in regions I, II, III together with the continuity conditions of 
the form (5.9) gives a spectrally patched solution to the Poisson equation in the L- 
shaped domain (5.6). 

The advantage of spectral methods over more conventional methods for patched 
problems is that the spectral schemes require only physical continuity conditions at 
the internal interfaces. On the other hand, finite-difference methods require spurious 
boundary conditions at interfaces whenever the order of the numerical scheme is 
higher than that of the differential equation to be solved. 

6. SPECTRAL ITERATION METHOD 

Consider the solution of a general linear differential equation Lu =J (Extensions 
to nonlinear problems will be discussed later.) Let an N-term spectral approximation 
to this problem be given by 

Ls, u, =f,, (6.1) 

where f, is a suitable N-term approximation to f: As mentioned several times earlier 
the matrix representation of (6.1) is generally a full N X N matrix so that direct solu- 
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tion of (6.1) by Gauss elimination methods would require order N* storage (for the 
matrix representation of L,,) and order N3 arithmetic operations. 

In this Section, we shall describe a method that permits solution of (6.1) using or- 
der N storage locations with the number of arithmetic operations of order the larger 
of N log N and the number of operations required to solve Lu = f by a first-order 
finite-difference method. The important conclusion is that spectral methods for 
general problems in general geometries can be implemented efficiently with operation 
costs and storage not much larger than those of the simplest finite-difference approx- 
imation to the problem with the same number of degrees of freedom. Since spectral 
methods require many fewer degrees of freedom to achieve given accuracy (or, nearly 
equivalently, spectral methods achieve much higher accuracy for a given number of 
degrees of freedom) than required by finite-order difference approximations, impor- 
tant computational efficiencies result from the new method. 

The idea of the iteration method is as follows: Suppose we are able to construct an 
approximation L,, to the spectral operator L,, that has the following properties: 

(i) L,, has a sparse matrix representation so that it can be represented using 
only O(N) storage locations; 

(ii) L,, is efficiently invertible in the sense that the equation 

is soluble as efficiently as a first-order finite-difference approximation to the problem; 

0 < m < llL;j L,,/I < A4 < co (6.3) 

for suitable constants m, M as N-t co. Roughly speaking, (6.3) requires that the 
eigenvalues of L;,,’ L,, be bounded from above and below as N-P co. Methods for 
constructing suitable operator approximations L,, will be discussed below. Now we 
indicate how Lop can be used to solve the spectral equation (6.1). 

There are several iteration procedure using L,, that converge efficiently to the solu- 
tion of (6.1). We describe three of these procedures here: 

Richardson (Jacobi) Iteration 

Consider the iteration scheme 

L&4g+” = L,,,u;‘- a(L,,lp-f,). (6.4) 

If 

then 

0 < a < 2/M 

(?I) 
‘N + ‘N (n -+ oo), 

(6.5) 

(6.6) 
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where U, satisfies (6.1): LspuN =f,. The proof is elementary: If stn) = ~,r’ - uN is the 
error, then 

Therefore, noting (6.3) 

(Jccntl)lJ < max(] 1 -acre], 11 -aM]) I]&(‘)]/ (6.7) 

so I/dn)ll + 0 as n + co if (6.5) holds. 
The optimal rate of convergence of Richardson’s iteration is normally achieved by 

choosing a to minimize the factor maxi] 1 - am), ] 1 - aMi> appearing in (6.7). This 
gives 

2 
a opt =M+m* 

(6.8) 

so 

!!- (n+‘)lJ < M-m 

II P’ II ‘Mfm’ (6.9) 

Since, as shown below, we can find L,, such that M < 2.5 and m > 1 for nearly ar- 
bitrary spectral operators LSD, it follows that Richardson’s method decreases the 
norm of the error in the solution of (6.1) by at least a factor 
(5/2 + 1)/(5/2 - 1) = 7/3 at each iteration. (Here aopt = 4/7.) The accuracy of a 
typical initial approximation to uN is improved by a factor lo6 after about 16 itera- 
tions independent of the resolution N. 

How much computational work is required per iteration? The right-hand side of 
(6.4) can be evaluated in O(N log N) operations by transform methods because u?’ is 
known. Also the solution of (6.4) for ~i!‘+i’ can be accomplished efficiently because 
of assumption (ii) above. 

Chebyshev Iteration 

The rate of convergence of the scheme (6.4) can be accelerated using Chebyshev 
acceleration [IO]. The scheme is 

L u(“+‘) = Lap[u,z@ + (1 - wJu~~“] - aw,(LspuY) -f,), op N (6.10) 

where 

(6.11) 

and p = min(] 1 - amI -l, I 1 - aMJ ‘). Here T,(j3) is the Chebyshev polynomial of 
degree n and m, M are given in (6.3). It is not hard to show that the error in the solu- 
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tion of (6.1) decreases by at least the factor /? + (p’ - l)“* after each iteration of 
(6.10). 

If M = 2.5, m = 1, then choosing a = 417 gives p = 713, so the error decreases by 
at least (7 + 2(10)“‘)/3 2: 4.44 at each iteration. Terefore the error in the solution of 
(6.1) is decreased by a factor lo6 after about nine iterations of (6. lo), nearly a factor 
two faster than the Richardson method (6.4). The penalty of using the Chebyshev ac- 
celeration method is that two levels of iterates, u$’ and a,$-‘), must be stored. 

Conjugate Gradient Iterations 

For many problems, it is possible to accelerate the convergence of the iteration 
method for solving (6.1) still further by using the conjugate gradient method [ 111. 
The applicability of this method to the solution of spectral equations will be studied 
in depth elsewhere. Here we report that for general Dirichlet problems for elliptic par- 
tial differential equations, the error is decreased by lo4 after only three conjugate 
gradient iterations and by 10’ after only seven iterations. 

Let us now 
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If the Fourier coefficients off(x), g(x), h( x ), ( ) v x are denoted fk, g,, h,, vk , respec- 
tively, then the spectral (Galerkin) equations for uk are 

LIpu = x [-p2fk-P + ipgkP, + h,_,]a, = uk. (6.17) 
IPICK 

I&-PI <K 

Clearly, these equations have, in general, a full matrix representation that requires 
O(K’) storage locations and O(K3) operations to invert. 

A suitable approximate operator L,, is constructed using the collocation points 
xi = 27tj/N (j = 0, l,..., N - 1 ), where N = 2K. In the physical space representation, 
we use the finite-difference approximation 

L,, u Ix, =f(xJ uj+ ’ ,;:i2+ uj- 1 + g(xJ ‘it ;ixKi- ’ + h(xJ ui (6.18) 

where uj = u(xj) and Ax = 2n/N. Obviously, L,, is sparse and efficiently invertible. 
To verify (6.3) we use the following elementary argument (that may be made more 
rigorous but no more correct by more involved WKB-like arguments.) If L is an 
eigenvalue of L;p’Lrp then there exists a function U(X) such that 

L,, u = JL,, u. (6.19) 

If u(x) is a smooth function of x (in the limit N-+ a), then both Lapu and Lypu 
should be good approximations to Lu(x) so (6.19) implies L - 1. On the other hand, 
if u(x) is a highly oscillatory function of x (in the limit N -+ co) then 

u” 9 u’ * 24 (N + co). (6.20) 

Therefore, 

L,, u -f(xj) ui+ 1 
-2Uj+Uj-1 

kW2 

and, if transform (pseudospectral) methods are used to evaluate Lypu, 

Lspu -f(xj) 2 (-k2)a, ei+ 
lkl<K 

so (6.19) gives 

f(vuj) C (-p)akeikxi - Af(Xj) “+I - 2uj + ‘j-’ . 
IkIcK (Ax) ’ 

The eigenfunctions of (6.23) are 

(6.21) 

(6.22) 

(6.23) 

(6.24) Uj zz eiqx, (141 <W 
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and the associated eigenvalues are 

1 = kw* 
4 sin’-:qAx ’ 

(6.25) 

Since 1 q/ < K with K = G N = z/Ax, we obtain 

1 < A < n*/4 (6.26) 

Thus, (6.3) holds with m = 1 and M = rr*/4 o 2.5. 
There are several extensions of the above method for constructing L,, that are im- 

portant in practice. First, in the case of Chebyshev-spectral methods, it is appropriate 
to construct L,, using finite-difference approximations based on the collocation 
points xj = cos zj/N. In this case, the operator bounds (6.3) continue to hold with 
M = 2.5, m = 1, for a wide variety of operators L. Second, higher-order equations are 
best treated by writing them as a system of lower-order equations. Thus, direct con- 
struction of L,, for L = V4 gives 

1 < 11 L&’ L,J 5 6 z (71*/4)*. (6.27) 

However, if we introduce u = V2u and define the second-order operator K by 

v2u - v 
=v2v 3 (6.28) 

then direct construction of K,, as a finite-difference operator gives 

1 < II&’ K,Il 5 2.5. (6.29) 

Third, odd-order operators, initial-value problems, and problems of mixed type are 
best treated by constructing Lap on a grid that is roughly 50 % finer than that used in 
construction of L,, by collocation. In this case the spectral bounds (6.3) with 
M 5 2.5 continue to hold for most problems. For example, the operator a/ax with 
periodic boundary conditions has spectrum ik while its centered finite-difference ap- 
proximation has spectrum i sin(kAx)/Ax so 

IIL;pLL,,lI = O(kAx/sin kdx), 

which is unbounded for I kAxI < 7c, but bounded by 4n/3(3)‘/* z 2.4 if lkdxl < 2~13. 

7. EXAMPLES 

Consider the solution of the heat equation 

au - = v*u - (y - e’, 
at (x, Y> E D, (7.1) 
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FIG. 1. A plot of the region D defined by (7.3~(7.4) m which the diffusion equation (7. I j-(7.2) is 
solved. The collocation grid is also plotted for 32 collocation points in 0 and 7 interior collocation 
points in 2. 

with Dirichlet boundary conditions 

u(x, y) = ex + eY, (x, Y> E do, (7.2) 

where D is the annular region plotted in Fig. 1 whose inner and outer boundaries are. 
respectively (in polar coordinates), 

r=f,(B)=0.3+0.1 sinB+O.l5sin58 (7.3) 

and 

r =f,(O) = 1 + 0.2 cos 0 + 0.15 sin 48. (7.4) 

TABLE I 

Errors in Steady-State Solution of (7. I t(7.4) 

Number of 
angular 

modes (0) 

Number 
of “radial” 

Chebyshev modes (z) 

Maximum 
relative 

error 

16 4 1.4 x 10 ? 
32 8 2.8 x 10 5 
64 16 2.5 x 10 I” 
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This problem is solved spectrally using the stretching transformation (5.3) to 
transform D into the rectangular domain (5.2) and then using Fourier series in 0 and 
Chebyshev series in z to represent u(x, y). 

As t -+ co, the solution to (7.1)-(7.4) approaches the steady-state solution 

u(x,y)=eX+ey, (x, v) E D. (7.5) 

In Table I, we list the maximum pointwise errors in the spectral solution of this 
problem as t + co. Evidently the rapid convergence of the spectral solution to the ex- 
act steady state is preserved in this complex geometry problem. It is not very surpris- 
ing that, for a given total number of retained modes, the best accuracy is achieved 
with about 4 times more “angular” (8) than “radial” (z) modes; after all, the “an- 
nulus” (7.3t(7.4) is on average about R times longer in circumference than in radius. 

Another example of the technique suggested in Section 6 is the solution of the 
boundary-layer equations 

wheref(<, q) is the dimensionless stream function and is subject to the boundary con- 
ditions 

Here (<, q) are the Levy-Lees coordinates; < increases in the free-stream direction 
and q increases away from the wall. The non-self-similar solution of these equations 
for Howarth’s flow in which the pressure-gradient parameter b(r) is given by 

(7.9) 

is a standard test problem [ 131. We solve (7.6F(7.9) using Chebyshev series in the 
transformed variable 

s = 2y/R - 1 (-1 <s< 11, 

where R is chosen so q = R is in the free stream and a Crank-Nicolson scheme is 
used in <. The finite-difference errors in r are reduced by Richardson extrapolation 
[ 131. The results for the viscous wail stress at two downstream locations near the 
separation point <x 0.901 are given in Table II together with some corresponding 
finite-difference results from Ref. [ 131. These results illustrate the high accuracy of 
the spectral schemes with modest resolution. 
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8. OTHER DEVELOPMENTS 

In this paper, we have explained how to apply spectral methods efficiently to 
problems in complex geometries. Many applications of these techniques are underway 
and results will be presented elsewhere. 

There have been several other recent developments of spectral methods that relate 
to these applications but have independent interest. First, Lagrangian spectral 
methods have been developed for the solution of high-speed flows. In this case, 
Lagrangian marker particles are used to provide the coordinate transformations 
necessary for the methods introduced in this paper. Second, fast conformal mapping 
techniques have been developed. These techniques may be attractive for the solution 
of free-surface flow problems by spectral methods. 
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